Common best proximity points for a pair of mappings with certain dominating property
نویسندگان
چکیده
Abstract This article introduces a type of dominating property, partially inherited from L. Chen’s, and proves an existence uniqueness theorem concerning common best proximity points. A certain kind boundary value problem involving the so-called Caputo derivative can be formulated so that our result applies.
منابع مشابه
On best proximity points for multivalued cyclic $F$-contraction mappings
In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.
متن کاملCommon best proximity points for $(psi-phi)$-generalized weak proximal contraction type mappings
In this paper, we introduce a pair of generalized proximal contraction mappings and prove the existence of a unique best proximity point for such mappings in a complete metric space. We provide examples to illustrate our result. Our result extends some of the results in the literature.
متن کاملCoincidence points and common fixed points for hybrid pair of mappings in b-metric spaces endowed with a graph
In this paper, we introduce the notion of strictly (α,ψ,ξ)-G-contractive mappings in b-metric spaces endowed with a graph G. We establish a sufficient condition for existence and uniqueness of points of coincidence and common fixed points for such mappings. Our results extend and unify many existing results in the literature. Finally, we construct some examples to analyze and support our results.
متن کاملBest proximity points of cyclic mappings
Given A and B two subsets of a metric space, a mapping T : A∪B → A∪B is said to be cyclic if T (A) ⊆ B and T (B) ⊆ A. It is known that, if A and B are nonempty and complete and the cyclic map verifies for some k ∈ (0, 1) that d(Tx, Ty) ≤ kd(x, y) ∀ x ∈ A and y ∈ B, then A∩B 6= ∅ and the mapping T has a unique fixed point. A generalization of this situation was studied under the assumption of A ...
متن کاملon best proximity points for multivalued cyclic $f$-contraction mappings
in this paper, we establish and prove the existence of best proximity points for multivalued cyclic $f$- contraction mappings in complete metric spaces. our results improve and extend various results in literature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2023
ISSN: ['0420-1213', '2391-4661']
DOI: https://doi.org/10.1515/dema-2022-0215